Anul 1905 a fost un an miraculos, an de cotitura in viata lui Albert Einstein si in istoria fizicii. In decursul a cateva luni, Einstein publica trei articole: despre miscarea browniana, despre electrodinamica corpurilor in miscare si despre efectul fotoelectric. Al doilea dintre ele este certificatul de nastere al teoriei relativitatii, iar al treilea una din pietrele importante puse la temelia a ceea ce avea sa se numeascã mecanica cuanticã, terorie la care insa Einstein nu va adera, convins fiind cã „Dumnezeu nu da cu zarul“. De o suta de ani, teoria relativitatii ne-a fãcut sa privim altfel lumea, a bulversat cunoasterea comuna si a intrat in limbajul curent ca semn de multe ori abuziv al relativismului, cand de fapt teoria lui Einstein afirma absolutul legilor fizicii in raport cu cel care le observa. Mai mult, si in ziua de azi eforturile fizicienilor se afla tot sub semnul lui Einstein: miza cea mare a stiintei e sa puna de acord teoria relativitatii cu mecanica cuantica.
Teoria relativității reprezintă în fizica modernă un ansamblu a două teorii formulate de Albert Einstein: relativitatea restrânsă și relativitatea generalizată. Ideea de bază a acestor două teorii este că timpul și distanțele unui eveniment măsurate de doi observatori au, în general, valori diferite, dar se supun totdeauna acelorași legi fizice. Când doi observatori examinează configurații diferite, și anume deplasările lor, una în raport cu cealaltă, aplicând regulile logice, se constată că legile fizice au în mod necesar o anumită formă.
Relativitatea restrânsă
Relativitatea restrânsă (Teoria relativității restrânse sau teoria restrânsă a relativității) este teoria fizică a măsurării în sistemele de referință inerțiale propusă în 1905 de către Albert Einstein în articolul său Despre electrodinamica corpurilor în mișcare. Ea generalizează principiul relativității al lui Galilei — care spunea că toate mișcările uniforme sunt relative, și că nu există stare de repaus absolută și bine definită (nu există sistem de referință privilegiat) — de la mecanică la toate legile fizicii, inclusiv electrodinamica.
Pentru a evidenția acest lucru, Einstein nu s-a oprit la a lărgi postulatul relativității, ci a adăugat un al doilea postulat: acela că toți observatorii vor obține aceeași valoare pentru viteza luminii indiferent de starea lor de mișcare uniformă și rectilinie.[1]
Această teorie are o serie de consecințe surprinzătoare și contraintuitive, dar care au fost de atunci verificate pe cale experimentală. Relativitatea restrânsă modifică noțiunile newtoniene de spațiu și timp afirmând că timpul și spațiul sunt percepute diferit în sensul că măsurătorile privind lungimea și intervalele de timp depind de starea de mișcare a observatorului. Rezultă de aici echivalența dintre materie și energie, exprimată în formula de echivalență a masei și energiei E = mc2, unde c este viteza luminii în vid. Relativitatea restrânsă este o generalizare a mecanicii newtoniene, aceasta din urmă fiind o aproximație a relativității restrânse pentru experimente în care vitezele sunt mici în comparație cu viteza luminii.
Teoria a fost numită “restrânsă” deoarece aplică principiul relativității doar la sisteme inerțiale. Einstein a dezvoltat relativitatea generalizată care aplică principiul general, oricărui sistem de referință, și acea teorie include și efectele gravitației. Relativitatea restrânsă nu ține cont de gravitație, dar tratează accelerația.
Deși teoria relativității restrânse face anumite cantități relative, cum ar fi timpul, pe care ni l-am fi imaginat ca fiind absolut, pe baza experienței de zi cu zi, face absolute unele cantități pe care le-am fi crezut altfel relative. În particular, se spune în teoria relativității că viteza luminii este aceeași pentru toți observatorii, chiar dacă ei sunt în mișcare unul față de celălalt. Relativitatea restrânsă dezvăluie faptul că c nu este doar viteza unui anumit fenomen – propagarea luminii – ci o trăsătură fundamentală a felului în care sunt legate între ele spațiul și timpul. În particular, relativitatea restrânsă afirmă că este imposibil ca un obiect material să fie accelerat până la viteza luminii.
Relativitatea generală
Relativitatea generală sau teoria relativității generale este teoria geometrică a gravitației, publicată de Albert Einstein în 1916. Ea constituie descrierea gravitației în fizica modernă, unifică teoria relativității restrânse cu legea gravitației universale a lui Newton, și descrie gravitația ca o proprietate a geometriei spațiului și timpului (spațiu-timp). În particular, curbura spațiu-timp este legată direct de masa-energia și impulsul materiei, respectiv a radiației. Relația fundamentală a teoriei relativității generale este dată de ecuațiile de câmp ale lui Einstein, un sistem de ecuații cu derivate parțiale.
Predicțiile relativității generale diferă semnificativ de cele ale fizicii clasice, mai ales în ce privește structura mărimilor fizice: timpul, metrica spațiului fizic real, energia, dar și asupra teoriei propagării luminii în spațiul fizic. Exemple de astfel de diferențe sunt dilatarea temporală gravitațională, deplasarea spre roșu gravitațională a luminii, și întârzierea gravitațională. Previziunile relativității generale au fost confirmate de observațiile empirice efectuate în toate domeniile științelor experimentale. Deși relativitatea generală nu este singura teorie relativistă a gravitației, ea reprezintă cea mai simplă teorie în acord cu datele experimentale. Totuși, teoria nu oferă răspuns la câteva dileme teoretice, cea mai fundamentală dintre acestea fiind modalitatea în care se poate unifica teoria gravitației generale cu legile mecanicii cuantice, care să conducă la o teorie completă și consistentă cu ea însăși a gravitației cuantice.
Teoria lui Einstein are implicații astrofizice importante. Din ea decurge posibilitatea existenței găurilor negre — regiuni ale Universului în care spațiul și timpul sunt distorsionate într-o măsură atât de pronunțată, încât nimic, nici măcar lumina, nu mai pot emerge de acolo — ca stare finală a evoluției stelelor masive. Există indicii că astfel de găuri negre stelare, precum și alte tipuri mai masive de găuri negre, sunt răspunzătoare pentru radiațiile intense emise de unele tipuri de obiecte astronomice, cum ar fi nucleele galactice active sau microquasarii. Curbura traiectoriei luminii sub efectul gravitației poate conduce la apariția de lentile gravitaționale, prin care se văd pe cer mai multe imagini ale aceluiași obiect astronomic. Relativitatea generală prezice existența undelor gravitaționale, care au fost măsurate indirect. O măsurare directă a acestora este scopul mai multor proiecte, între care și LIGO. În plus, relativitatea generală stă la baza modelelor cosmologice actuale ale unui univers în expansiune.
Niciun comentariu:
Trimiteți un comentariu